REACH: Realistic Extension Algorithm via Covariance Hessian

نویسندگان

  • Kei Moritsugu
  • Jeremy C. Smith
چکیده

Coarse graining of protein interactions provides a means of simulating large biological systems. Here, a coarse-graining method, REACH, is introduced, in which the force constants of a residue-scale elastic network model are calculated from the variance-covariance matrix obtained from atomistic molecular dynamics (MD) simulation. In test calculations the C α-atoms variance-covariance matrices are calculated from the ensembles of 1-ns atomistic MD trajectories in monomeric and dimeric myoglobin, and used to derive coarse-grained force constants for the local and nonbonded interactions. Construction of analytical model functions of the distance-dependence of the inter-residue force constants allows rapid calculation of the REACH normal modes. The model force constants from monomeric and dimeric myoglobin are found to be similar in magnitude to each other. The MD intra-and intermolecular mean-square fluctuations and the vibrational density of states are well reproduced by the residue-scale REACH normal modes without requiring rescaling of the force constant parameters. The temperature-dependence of the myoglobin REACH force constants reveal that the dynamical transition in protein internal fluctuations arises principally from softening of the elasticity in the nonlocal interactions. The REACH method is found to be a reliable way of determining spatiotemporal protein motion without the need for expensive computations of long atomistic MD simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear fitness–space–structure adaptation and principal component analysis in genetic algorithms: an application to x-ray reflectivity analysis

Two novel genetic algorithms implementing principal component analysis and an adaptive nonlinear fitness–space–structure technique are presented and compared with conventional algorithms in x-ray reflectivity analysis. Principal component analysis based on Hessian or interparameter covariance matrices is used to rotate a coordinate frame. The nonlinear adaptation applies nonlinear estimates to ...

متن کامل

Variable-storage quasi-Newton operators as inverse forecast/analysis error covariance matrices in variational data assimilation

Two approximations of the Hessian matrix as limited-memory operators are built from the limited-memoryBFGS inverse Hessian approximationprovided by the minimization code, in view of the speci cation of the inverse analysis/forecast error covariance matrix in variational data assimilation. Some numerical experiments and theoretical considerations lead to reject the limited-memory DFP Hessian app...

متن کامل

Covariance selection for nonchordal graphs via chordal embedding

We describe algorithms for maximum likelihood estimation of Gaussian graphical models with conditional independence constraints. This problem is also known as covariance selection, and it can be expressed as an unconstrained convex optimization problem with a closed-form solution if the underlying graph is chordal. The focus of the paper is on iterative algorithms for covariance selection with ...

متن کامل

Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm

The simultaneous perturbation stochastic approximation (SPSA) algorithm is modified to obtain a stochastic Gaussian search direction (SGSD) algorithm for automatic history matching. The search direction in the SGSD algorithm is obtained by simultaneously perturbing the reservoir model with unconditional realizations from a Gaussian distribution. This search direction has two nice properties: (1...

متن کامل

Uncertainty Quantification for LDDMM Using a Low-Rank Hessian Approximation

This paper presents an approach to estimate the uncertainty of registration parameters for the large displacement diffeomorphic metric mapping (LDDMM) registration framework. Assuming a local multivariate Gaussian distribution as an approximation for the registration energy at the optimal registration parameters, we propose a method to approximate the covariance matrix as the inverse of the Hes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007